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Abstract. T h e  kinetics of an irreversible monomer-monomer model of heterogeneous 
catalysis is examined. In this mode!, !WO reactive species, A and E!, ahsorb and Etick to 
single sites of a catalytic substrate. Surface reactions are assumed to occur only between 
dissimilar species which are nearest neighbours on  the substrate. The kinetics ofthe process 
is studied in the reaction-controlled limit, where the adsorption occurs readily so that the 
process is limited by the reaction rate. We map the monomer-monomer model of 
heterogeneous catalysis on to a kinetic king model and solve the model exactly in one 
dimension, where the dynamics turns out to  be a superposition of zero-temperature Glauber 
spin Rip dynamics and infinite-temperature Kawasaki spin exchange dynamics. Finally, 
we discuss the monomer-monomer processes with desorption. 

1. Introduction 

Heterogeneous catalysis is a kinetic process of considerable interest in many unrelated 
fields of science and technology. In this process, the rate of a chemical reaction is 
enhanced by the presence of a suitable catalyst material [ 11. Typically, such processes 
are described by Langmuir-Hinshelwood kinetics, where the molecules are assumed 
to be randomly distributed on the surface [ 11. These are assumptions of a mean-field 
character, as microscopic details, such as spatial fluctuations in concentration and 
excluded volume interactions, are neglected. However, recent studies suggest that 
fluctuations are a crucial element in driving the kinetics [2]. 

Therefore, investigations of microscopic models have begun to identify the general 
principles underlying the kinetics ofcatalysis [3-101. Results from computer simulations 
have shown that the phenomenon of ‘poisoning’ or saturation, where the catalytic 
substrate eventually becomes covered by one of the species only, occurs, thereby 
terminating the catalysis process, or there may be a n  apparent reactive steady state. 
Phase transitions which demarcate these possibilities are examined in a number of 
recent studies [3-121. 

In this paper, we consider the monomer-monomer catalytic process. In this model, 
two reactive species, A and B, adsorb and stick to single sites of a catalytic substrate. 
Surface reactions are assumed to occur only between dissimilar species which are 
nearest neighbours on the substrate. For unequal adsorption probabilities, the substrate 
quickly becomes saturated with the preferred species. For equal adsorption prob- 
abilities, a finite substrate still becomes saturated, but at a much slower rate with equal 
probability of saturation by either of the two species. 

There are two basic limiting cases of catalysis. When the reaction on the substrate 
occurs quickly, the process is limited by the adsorption rate. On the other hand, in 
the reaction-controlled limit the adsorption occurs readily so that the overall process 
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is limited by the conversion of unlike monomers to AB pairs. Much of the previous 
work [3-8,lO-121 has considered the adsorption-controlled limit. However, many 
catalytic processes occur in the opposite limit [I]. 

In  the present paper, we focus on the reaction-controlled limit first studied in [13]. 
For the monomer-monomer model in the reaction-controlled limit, Monte Carlo 
simulations [9] and exact results [14] show that the basic dynamical features of the 
process agree with mean-field predictions when the dimensionality d of the substrate 
is at  least 2, i.e. the upper critical dimension is d, = 2 [9] (for the monomer-dimer 
processes, an analogy to Reggeon field theory suggests that d,=4 [ l l ,  121). It is 
therefore natural to study the kinetics of the monomer-monomer model at d = 1 .  In 
the following, we solve this model analytically and confirm that fluctuations indeed 
govern the long-time behaviour of the model in one dimension. 

It is important that for the monomer-monomer processes only a quantitative 
difference between the reaction-controlled and adsorption-controlled limits has been 
observed [9,15]. Thus the relatively simple reaction-controlled limit gives an insight 
into the general case of arbitrary adsorption and reaction rates. 

The rest of this paper is organized as follows. In section 2 we map the monomer- 
monomer model on to a kinetic king model with competing dynamics. In section 3 
we calculate one- and two-spin correlation functions. In section 4 we solve the catalysis 
model with desorption, and in section 5 we conclude the paper. 

2. Dynamics 

In the reaction-controlled limit, the substrate quickly becomes full. Thus, we start our 
study with a substrate that is randomly filled by equal amounts of As and Bs. If two 
neighbouring sites are occupied by  opposite species, a reaction occurs in which the 
reactants desorb, each unoccupied site then being immediately refilled by either A or 
B with equal probability. For unequal adsorption probabilities, there is a net bias of 
either As or Bs, and the substrate becomes saturated exponentially in time with the 
preferred species. 

We shall discuss the more interesting case of equal adsorption probabilities, where 
diffusive fluctuations drive the system to saturation. It is useful to map the model on 
to a kinetic Ising model. Identifying As with f l  and Bs with -1, a full substrate may 
be described in terms of Ising variables S = {Sk}. It can be seen that the probability 
distribution P ( S ,  t)  of the Ising state S at time f satisfies the following master equation: 

d 
dt  -pP(s, I)=!: ( U k ( S k ) p ( s k ,  t ) - U k ( S ) P ( S ,  t ) )  

+ E  (Vk(Sk.k+')P(Sk.k+l, f)- V ; ( S ) P ( $  !)). !!) 

In this equation, Uk(S) and V , ( S )  denote the rates for the system to jump from the 
state S to the state Sk  and Skkt' ,  respectively, where S* (Srk+ ' )  are obtained from S 
by flipping the kth spin (kth and ( k f 1 ) t h  spins). These flip rates are given by the 
expressions 

(20) 
1 

Uk(S) =-[2-Sk(Sk-I+~k+Jl 
471 
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Notice that the process (2a) defines the single-flip dynamics at zero temperature 
because the noise is absent as is evident from the fact that single-flip reactions 
AAA-ABA and BBBjBAB are impossible. Furthermore, the rate of the single-flip 
process ABAjAAA exceeds the rate of the process ABBjAAB by a factor of 2, 
since the former reaction proceeds after desorption of an arbitrary reaction pair (AB 
or BA) while the latter reaction proceeds after desorption of the only reaction pair. 
Thus the single-flip part of the surface catalytic process is actually given by the reaction 
rule (20); introduced by Glauber in the realm ofthe kinetic king model [16!. Similarly, 
equation (26) describes the spin-exchange dynamics (the Kawasaki dynamics) at 
infinite temperature because the exchange process does not depend on the neighbouring 
sites. A simple analysis shows that the dynamics of our model coincides with the spin 
dynamics (2) under the following constraint between the time-scales of spin-flip and 
spin-exchange processes: 

71 = T z .  (3 )  

Notice that the general case of arbitrary spin flip and spin exchange time-scales can 
also be dealt with. 

It is known that the limiting regimes of zero-temperature Glauber dynamics and 
infinite-temperature Kawasaki dynamics are solvable (see [ 16, 171, respectively). When 
both spin flip and spin exchange processes are present, we have a non-equilibrium 
modei since the system is in coniaci with two heat baihs which are ai zero and infinite 
temperature. As we shall show below, this model is also solvable in the sense that the 
time evolution of the one- and two-spin correlation functions can be calculated exactly. 
In closing we note that our model is an example of king-type systems with competing 
dynamics wbicb have been investigated in a series of recent studies (e.g. see [18,19] 
and references therein). 

3. Analytical results for correlations 

The advantage of the spin formulation of the problem is that one can easily derive a 
closed set of differential equations for the spin correlation functions 

(Si. .. q = z s  ;... Sp(S,  1 ) .  (4) 
S 

Consider first one-spin correlation functions. Multiplying both sides of equation 
(1) by Sk and summing over all configurations S we find that the average values of 
magnetizations at different sites, (&), are related by the following set of differential 
equations: 

Here we have introduced a renormalized time-scale T :  

1 1 1  +--. 
7 71 7 2  

_=- 

A remarkable feature of the system ( 5 )  is that it coincides with the corresponding 
equations for the single-flip Glauber model [16], again at zero temperature but with 
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different time-scale T. Henceforth, we shall take this time-scale to be unity. Solving 
equations (5) at arbitrary initial conditions, 

( S k ) ( t = o ) = u k  (7) 

yields (see [ 1 6 ] )  

m 

(Sk)=exp(-r) 1 u m r k - m ( f )  (8) 
m = - m  

where I,,, denotes modified Bessel functions. 

l i - j l a 2 :  
We now consider two-spin correlation functions. After some algebra one finds for 

d 
U; 

2 7 (S,S,) = (S.-lS,)+(S,+,s,)+(s,S,~,)+(S,S,+,) -4(S,.9,). ( 9 0 )  

These equations are identical to the corresponding equations of the Glauber model. 
The equations for l i - j l=  1, however, are different: 

( 9 b )  
d 
d t  2 -(SkSk+l) = 2x + (Sk-lSk+l)+ ( S k S k + 2 )  -2(1+ x)(Sksk+l ) ,  

In equations ( 9 6 )  we have introduced the shorthand notation X = T ~ / ( T ~  + T ~ ) .  We 
shall investigate the general case of arbitrary X, i.e. 0 s X 4 1,  although the constraint 
(3 )  gives the appointed value X = f .  

Turn now to the transient kinetics of the system on the basis of the simplifying 
assumption that the initial distribution P ( S ,  t)  is translationally invariant. Then (S,S,) 
depends on j - i at all times. Introducing R. = (SZS,+") we can rewrite equations ( 9 0 )  
and ( 9 6 )  as 

for n > 1 (loa) 

( 1 0 6 )  

d 
d t  

d 
d t  

- R R . = R . _ , + R . + , - 2 R ,  

- R,  = R2-(1  + X ) R , + X .  

One can easily find the steady state R,, = 1 for all n 1, which corresponds to the 
saturation. For arbitrary initial data the general solution is then constructed as a sum, 

m 

R,(t) = 1 + 1 (R,(O) - l)Qms(t) (11) 
I = I  

where Q..(t) are described by the equations 

with initial conditions 

Qn.(t=0)=6.,  
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A solution of equations (12a)-(12c) has been found recently in the context of a 

Q.,(f)=e-2f( r ~ - * ( Z f ) - r " + ~ ( Z f ) + f - '  k r o  1' (-X)kIn+,+h-,(2f)) .  (13) 

In the present problem, with the initial state of the form R,(O) = 0, a tedious but 
straightforward calculation yields the final expression for the two-spin correlation 
functions: 

biophysical problem [20]: 

In deriving equation (14), we have used the recursion relation for the Bessel functions 
[211 

(15) 
n 

f 
rn+(zt)  - rn+ , ( z t )  =- r m )  

and the identities [21] 

One can obtain more compact formulae in the scaling region 

n >> 1 t>>l  y=n(4t)-'/2=finite. (17) 

Using the asymptotic relation for the modified Bessel functions in this scaling region 
[211, 

exp( -21 )1 , (2 t )= (4 . r r t ) - ' /~  exp(-y2) (18) 

and replacing the first sum on the right-hand side of equation (14) by the integral, we 
arrive at the simple scaling formula 

R n ( f ) =  Erfch)  (19) 

where 

Erfc(y) = IymdZ exp(-2'). 

At long times, equations (17) and (18) predict a power law growth of the length 
L A ( f )  and L , ( f )  of domains, L A ( f )  = L d l )  = f"'. It is natural because the essential 
mechanism for saturation is the diffusion of domain walls. On this basis one can 
conclude that a characteristic saturation time grows as N2 with system size N. 

One can estimate this saturation time quantitatively. Let us consider a finite 
one-dimensional lattice with periodic boundary conditions. We again assume a transla- 
tionally invariant initial state. The correlation functions are governed by equation 
(loa) when l < n < N - 1 ,  equation ( lob)  when n = l  and 

d - RN-,  = RN--2- ( 1  + X ) R N - ,  + X  (10c) df 
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when n = N - 1. The solution of equations (lOa)-(lOc) can be expressed as a superposi- 
tion of the steady state and normal modes having the form exp(-Ar)Q,, i.e. Rn = 
l+exp(-At)Q.. By inserting this expression into equations (loa)-(loc) one finds the 
system of linear equations, MQ =-A@, with Q = ( Q , ,  . . . , QN-,)T and 

I-x 1 0 ... 

M =  . . . . . . . . . . . . . . . . . . . . . . .  [ :..;,,I,, I; 
Following the standard methods of matrix diagonalization [22] the eigenvalues of 

the ( N - l j x ( N - l J  tridiagonai matrix M can be written as 

A = -COS e) (20) 

and the possible values of 0 are determined from the following two transcendental 
equations: 

sin(N8/2) 
sin[(N -2)0/2] 

x - l = ,  

cos( NB/2) x- l= 
COS[(N -2)8/2] 

It can be shown that equations (21a) and (216) have N - 1 distinct solutions in the 
interval O <  0 s  m. Thus by solving these equations one finds all the eigenvalues of the 
matrix M. 

The longtime relaxational behaviour is governed by the smallest eigenvalue A,, = 
2[1 -cos(B,,.)]. A simple analysis shows that Bmi. is a solution of equation ( 2 1 ~ ) .  In 
the most interesting case, N >> 1, a straightforward calculation yields an asymptotic 
formula for Omin: 

Omin= 2.nN-’( 1+ C ,  N-’+ C2N-’+ C3N-’+. . . ) (22) 

where C, = (1  -X)/( l  - X / 2 ) ,  C2= C: and C3= C:- .n2C,(1 -CI)(2-C,)/3. 

T for a system of size N >> 1, with periodic boundary conditions, is 
As a consequence, we find that characteristic decay time of the longest-lived mode 

1 CI 
4 2  -. 2.n 

T =  (AmJ’ = - N 2  -7 N + + C,( 1 - C,)(2 - C,)(4N)F1+. . . (23) 

where C, = (1 -X)/( l  - X / Z ) ,  and CI =$under the constraint (3). Up to the finite-size 
corrections, the dependence T =  N2 was first predicted by ben-Avraham et al [9] on 
the basis of numerical simulations and qualitative arguments. 

4. Catalysis model with desorption 

It is clear that the present model of monomer-monomer surface catalytic reactions is 
a gross oversimplification of the actual catalytic process. A more realistic treatment 
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should consider the effects of surface diffusion, desorption, finite adsorption and 
reaction rates, nearest-neighhour interactions, etc. Very recently, some of these effects 
have been included and studied numerically in the monomer-dimer model of catalysis 
(see [61). We have not succeeded in solving such realistic models even on a one- 
dimensional substrate. However, if only the desorption process is taken into account, 
the monomer-monomer model proves to he solvable by our methods. 

We shall consider the monomer-monomer catalytic process in the reaction-limited 
regime with desorption [ 2 3 ] .  This process was investigated numerically and theoretically 
in the mean-field approximation. The model can again be mapped on to a kinetic king 
model. When a particle desorbs, the unoccupied site is then immediately refilled with 
an A or a B equiprohably, i.e. we get the additional noise spin flips. Therefore the 
dynamics of the process consists of nearest-neighbour spin exchanges with the previous 
rate (26) and spin flips with the modified rate 

1 1 
U,(S)=-  [ 2 - S k ( S k - , + S k + , ) ] + - .  

471 2 7, 

Notice that the process ( 2 4 )  describes the single-flip dynamics at non-zero temperature 
[161. 

It is not difficult to find a set of differential equations for magnetizations, 

(25) 
d 

27& ( S k ) =  Y ( ( S ~ ~ I ) + ( S , + , ) ) - ~ ( S , )  

and to solve this system with general initial conditions (7): 
m 

(Sd=exp(-t/T) 1 4 k - m ( y t / T ) .  
m=-m 

Here we have introduced a renormalized time-scale, 

1 1 1 1  +-+- 
7 71 7 2  73 

and a spin flip parameter y, 

_=_  

A remarkable feature of equation ( 2 5 )  is that it coincides with the corresponding 
equation for the single-flip kinetic king model [ 1 6 ]  at the temperature T., which is 
defined from the relation y = tanh(2J/ TeE), where J is the strength of the nearest- 
neighbour interactions in the king model. 

We now turn to the two-spin correlation functions. On this level, the description 
of the system in terms of the single-flip model at the temperature Teff breaks down, 
hut corrections are rather trivial. For simplicity, we write the equations only for 
translationally invariant initial conditions: 

for N - l >  n > 1 ( 2 9 0 )  

( 2 9 6 )  

( 2 9 ~ )  

d - Rn = ~ ( R n - , + R f i + 1 ) - 2 R n  d t  

d 
d t  

d 
d t  

- R I  = y R 2 - (  1 + X ) R ,  + yX 

- RN-, = yRN-2- ( l + X ) R N - - I +  yX.  
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Here X = ( l / ~ , + l / ~ ~ ) ( l / ~ , + l / ~ ~ + l / ~ ~ ) - ~ a n d  weshall takethetime-scale 7,defined 
now by equation (27). to be unity again. A general solution to these equations is a 
superposition of the steady state, 

(30) 
and the normal modes having the form exp(-21+ Ayf)Q.. Eigenvalues A can be written 
as A=2cos 8 and the possible values of 8 are determined from the following two 
transcendental equations: 

R. = Cv" f Dq-n 

sin( N 8 / 2 )  
sin[(N -2)0/2] 

x - l = y  . 

cos( N 8 / 2 )  
cos[( N - 2)8/2]' 

x - l = y  

By inserting equation (30) into the system (29) one finds the well known king's 
relation for 7 = v( y ) .  7 = y - ' [  1 - (1 - y 2 ) 1 / 2 ] ,  and tedious expressions for the constants 
C and D. 

Let us first consider a system with a finite desorption probability, i.e. we assume 
that T , = T ~ .  Then y<l and a simple analysis shows that the steady state behaves as 
R. = Cv' for n << N. Thus a correlation length 6, [= -l/ln(v), is finite as it follows 
from the explicit expression for 7 = ~ ( y )  and we see that system relaxes to the steady 
state with equal amounts of As and Bs. The relaxation time of the longest-lived mode, 
T =  1/(2-2y), is finite. 

We now turn to the more interesting case when the number of catalyst sites N 
tends to infinity and, simultaneously, the desorption probability tends to zero. Further- 
more, we assume that the latter quantity scales with the former as r, /T,  = N" with 
some exponent a > 0. 

When a < 2 ,  a system relaxes to the steady state R. = Cv", with approximately 
equal amounts of As and Bs, after the relaxation time T = 1/(2 - 2 y )  = N". When 
a > 2, a system relaxes to the trivial steady state R. = 1 and, consequently, saturation 
occurs. The saturation time is proportional to the square of the number of catalyst 
sites, T= N2/47r2. 

Finally, we discuss the behaviour at the borderline, a = 2. For such a case, one can 
recast equation (30) into the form R. = cosh(,yy)/cosh(y), where y = (2n  - N ) /  N and 
,y is defined by the relation ,y = N ( T ~ / ~ T ~ ) " ~ .  The relaxation time is now given by the 
formula T = N2(4?r2+4,y2)-'. 

Thus our exact approach reproduces the occurrence of a noise-induced transition 
[23] from monostability at  a <Z to bistability at a>Z in a model of heterogeneous 
catalysis with desorption. 

5. Conclusions 

We have presented exact results for the kinetic behaviour of the monomer-monomer 
model of heterogeneous catalysis at  d = 1 in the reaction-controlled limit. For equal 
adsorption probabilities, we have found that diffusive fluctuations eventually drive a 

catalyst sites. Furthermore, finite-size corrections to the characteristic decay time were 
evaluated analytically. We have also confirmed the occurrence of a noise-induced 
bistability in a model of heterogeneous catalysis with desorption. 

e-:*- -:--A .- --+..-A:-- :- - 6:" - - , . . . -~ :~ . .~ l  +- rL. Cn..I-P "f ths nl.mhr. nf 
I l l . 1 , T - D l l r "  DJD,",' I" D P L U L P L L " , ,  11. P L L L l l C  p L " p " . , , Y . . "  I" ..LC ay"'... v. .I._ .......I-. -. 
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